AGCT project
Beta
We thought for a long time about how difficult aging is and what to do with it.
They also thought about which experiment to extend life would be the most effective.
There are a lot of experiments on life extension, and there is more and more information. Every day, articles are published that scientists have found another “aging gene” or clarified the role of a certain protein in the development of an age-related disease.
But how to make a choice, which experiment to conduct, if the flow of scientific news about aging and longevity is only growing? What direction is the most promising?
First of all, we decided to collect all the information about potential targets for aging therapy. More precisely, about the genes associated with aging and longevity. And also all the experiments where they extended the life of animals.
Why about genes? Because life expectancy is clearly set by genes. Animals of the same species live approximately the same, and the lifetime of representatives of different species can differ by a million times. It’s about the genes.
Thus, we collected a huge amount of information in Open Genes and systematized it very well so that we could find interesting patterns and identify the most promising targets.
We also know from the literature that a combination of interventions sometimes prolongs the life of animals better than either therapy alone.
There is even a database of such combinations. We didn’t make the base, but we really like it.
We decided: let’s act on several mechanisms of aging at once! Yes, you can get a negative effect, but you can try to achieve the effect of addition. Moreover, such results have already been shown, and even better can be done.
Therefore, we believe that experiments with combination therapy are the most promising in slowing down aging in animals.
But! They are also the most difficult. Plus, it takes a lot of experimentation.
Then we decided, let it be an open project. We will tell everyone about the importance of combined therapy for aging, what opportunities and prospects there are, we will conduct experiments ourselves and will seek funding for new ones.
Since there are quite a lot of people interested in life extension, we are now inviting everyone to do research together.
In our ideal universe, we attract everyone in the world: “wet” biologists work in the laboratory, bioinformaticians analyze the data obtained, designers create designs, illustrators of illustrations, programmers program everything, fundraising specialists raise money for such beauty.
In short, we invite everyone to our AGCT project to find a cure for old age together. We do it radically openly, do not hide anything, we are glad to new ideas and proposals.
Act like us, act with us, act better than us!
The body is a homeostatic system with a mass of regulatory mechanisms that support its stable physiological state and development. Aging in the vast majority of cases is an inherent property of biological systems and is mediated in various ways.
As a result, point impacts do not lead to significant changes in such a system. Therefore, therapy that reverses the aging process or stops it must be complex, consisting of combinations of various effects on the body.
The final effect of gene therapy depends not only on the activity of a single gene, but also on the mass of other interconnected genes. Such a huge number of variations leads to a combinatorial explosion and requires the development of theoretical gene therapy selection algorithms, which we will develop using mathematical models, namely the theory of responses to small perturbations of large systems.
What if we crossed two sets of genes: 323 genes associated with longevity in humans,…
The diagram shows mutant Drosophila genes associated with changes in lifespan (blue), as well as 27 different combinations of these mutations (pink). When you hover over an element, the average life expectancy of animals with a mutation for this gene is displayed. Source: SynergyAge database.
There are various strategies for choosing the optimal combination of genes to increase lifespan, including…
Комбинирование в одном геноме следующих мутаций: chico[1]; puc[A251.1F3]
Комбинирование в одном геноме следующих мутаций: chico[1]; puc[A251.1F3]
Комбинирование в одном геноме следующих мутаций: chico[1]; puc[A251.1F3]
Комбинирование в одном геноме следующих мутаций: chico[1]; puc[A251.1F3]
Combination of the following mutations in one genome: chico [1]; puc [A251.1F3]
Combination of the following mutations in one genome: chico [1]; Indy [206] or Indy [ 302]
Combination of the following mutations in one genome: Indy [206] or Indy [206], puc [A251.1F3]
Combination of the following mutations in one genome: chico [1]; E(z) [731]
Combination of the following mutations in one genome: E(z) [731], puc [A251.1F3]
Combination of the following mutations in one genome: chico [1]; E(z) [731], puc [A251.1F3]
Combination of the following mutations in one genome: chico [1]; Indy [206] or Indy [302], puc [ A251.1F3]
The aging of the body is a complex phenomenon, during which there is a weakening of its vital functions. This process is inextricably linked with the genetics of the organism. Read more about the technologies and genes that change to increase life expectancy.
NF-κB is an evolutionarily ancient, structurally complex and multifunctional molecule that we truly admire because…
Imagine that all the world's greatest doctors, veterinarians and scientists got together and were given…
On the mechanisms and application of the dCas9-VPR-dependent system (method of targeted gene overexpression).
Nature Aging published the work of the well-known Rochelle Baffenstein. In which she draws attention…
The section is devoted to the study of the genes of living organisms in their entirety. The genome of an organism is a “big data” that requires the use of special methods of processing and analysis. This section will be developed as a school of data analysis and a master’s course on aging.
What if we crossed two sets of genes: 323 genes associated with longevity in humans,…
The mission of the GO Consortium is to develop a comprehensive computational model of biological…
Still, we did a lot of work at Open Genes. At the beginning of the…
There was such a belief that if cancer was defeated, then life would last only…
Participate in experiments, look for laboratories, put forward scientific concepts, write scientific articles.
Chat in Telegram
Write popular science posts, create illustrations and videos, translate texts, test the site, participate in discussions and suggest design ideas.
You can fund the study of a particular combination or make a donation that will accelerate and expand the experimental work.
Share the link to the project with friends and acquaintances on social networks and instant messengers, write a post and tell us about our project.
We want to make the AGCT project interesting and understandable. Therefore, we ask you to give feedback and take a short survey, which will determine what this project will be like in the future.
The Department of Molecular Biology and Genetics was founded in 1977 as the first Department of Molecular Biology in Turkey and has since expanded to include many areas of biology. Currently, the laboratory is conducting research to identify new human genes, as well as genetic and molecular mechanisms responsible for cancer, epilepsy, hemophilia, neurodegenerative disorders, peripheral neuropathies and thalassemia.
Many genes are now known to have both positive and negative effects on lifespan. An artificial change in the activity of each gene can be of three types:
Thus, gene therapy for aging is based on overexpression of favorable genes and knockout (or knockdown) of dangerous or destructive genes.
Gene therapy has a number of challenges. It must be studied on various organisms, since the human genotype differs significantly both within the species and from other animals. Gene therapy will vary depending on the age of the organism. The final effect depends not only on the activity of a single gene, but also on the mass of other interconnected genes. Such a huge number of variations leads to a combinatorial explosion and requires the development of theoretical gene therapy selection algorithms, which we will develop using mathematical models, namely the theory of responses to small perturbations of large systems.
Aging is a complex process that is accompanied by complex changes in the body, including at the phenotype and molecular levels. Therefore, therapy that reverses the aging process or stops it must be complex, consisting of combinations of various effects on the body.
We are conducting a scientific study to determine how the change in combinations of various genes in the body of fruit flies affects lifespan.
Fly strains used for longevity studies should be previously brought to the same genetic background by crossing with a wild-type strain (e.g. Oregon, Canton-S or yw) at least 6-10 times (which may require an additional 2 -4 months). Next, flies with mutations in genes that are associated with an increase in life expectancy will be crossed, and the presence of the described / expected mutations in these lines will be confirmed by molecular methods. Fly lifespan experiments will be carried out according to previously described protocols. 1
Work with lines of flies carrying gene mutations for which the effect on lifespan has been previously shown in the literature.
Obtaining combinations of mutations by crossing lines of flies.
Testing possible combinations of gene mutations and testing for synergistic effects on fly longevity.
Work with lines belonging to the dCas9-VPR-dependent system for targeted gene overexpression. Investigation of the combined effects of dCas9-VPR-dependent overexpression of target genes on fly longevity.
Overexpression of the target gene is possible after hybridization of any of the transgenes with guide RNA simultaneously with the UAS-dCas9-VPR transgene encoding the dCas9-VPR transcription activator and the GAL4 driver providing (ubiquitous or tissue-/stage-specific) production of dCas9- VPR.
Below is a dCas9-VPR-dependent system for targeted gene overexpression.
Creation and testing of transgenic fly lines encoding sgRNA for induced dCas9-VPR-dependent overexpression of selected candidate genes.
Here it is supposed to combine mutations (from stage 1) with overexpression of a gene (stages 2-3), overexpression of one gene with overexpression of another gene (stage 2-3), etc.
Drosophila melanogaster, otherwise fruit or vinegar fly, is a species of fly (taxonomic order Diptera) of the Drosophilidae family.
4 pairs of chromosomes
Было высказано предположение, что иммунная система играет ключевую роль в определении продолжительности жизни. В исследованиях эффективности врожденной иммунной системы у дрозофил, несущих продлевающие жизнь мутации puc (сигнальный путь JNK, реакция на стресс) и chico (сигнальный путь инсулина) было обнаружено, что дрозофилы как с мутацией puc, так и chico демонстрируют почти трехкратное увеличение выживаемости после заражения грамположительными или грамотрицательными бактериями. При этом гетерозиготные животные puc, так же как и chico гомозиготные и гетерозиготные обладают повышенной устойчивостью к патогенам. Таким образом сочетание данных мутаций может позволить потенцировать устойчивость к инфекциям через разные сигнальные системы, однако точный механизм, с помощью которого эти вмешательства способны обеспечить замедление возрастных изменений в организме, а также самого старения, все еще широко обсуждается.
В случак данной комбинации надежды обусловлены влиянием генов на один и тот же глобальный процесс – энергетический метаболизм – причем схожим образом: мутации в перспективе могут параллельно снижать энергозатраты на осуществление процессов метаболизма и снижать их скорость. Потенциально, это может заметно увеличить экономию ресурсов организма и тем самым продлить жизнь.
Сочетание мутаций, затрагивающих гены Indy и рuс, может быть перспективным за счет суммации эффектов, возникающих при их изменении. Первый из них напрямую связан с энергетическим обменом, в ходе которого образуются активные формы кислорода, оказывающие токсическое действие на клетки организма. При этом мутация в гене Indy замедляет процессы метаболизма, тем самым снижая выработку АФК. В свою очередь мутация рис позволяет организму более эффективно обезвреживать токсичные молекулы кислорода, тем самым устраняя тот эффект, что все же развивается, несмотря на мутацию, описанную ранее.
Мутация в гене chico снижает затраты энергии на проведение биохимической реакции, что гипотетически может формировать эффект, сходный с голоданием. Да, в лабораторных условиях это приводило к повышению продолжительности жизни, но мутация в гене E(z), повышающая устойчивость организма к условиям дефицита питательных веществ, в данном случае будет более чем уместна.
Потенциальная выгода данной комбинации может быть связана с заметным повышением устойчивости организма к оксидативному стрессу. Как было сказано выше, мутация в гене рис приводит к более эффективному устранению токсических активных форм кислорода (АФК), в то время как мутация E(z) регулирует устранение последствий воздействия. Таким образом, мутация рис позволит снизить само воздействие синтезируемых активных форм кислорода, а мутация E(z) должна нивелировать негативные последствия.
Сочетание мутаций, затрагивающих гены chico, E(z) и рuс, может быть перспективным за счет суммации эффектов, возникающих при их изменении. Первый напрямую связан с энергетическим обменом, в ходе которого образуются активные формы кислорода, оказывающие токсическое действие на клетки организма. При этом мутация в гене chico снижает затраты энергии на протекание биохимических реакций, что уменьшает интенсивность появления АФК. В свою очередь мутация рис позволяет организму более эффективно обезвреживать токсичные молекулы кислорода, тем самым устраняя тот эффект, что все же развивается, несмотря на мутацию, описанную ранее, в то время как мутация в гене E(z) повышают устойчивость организма к оксидативному стрессу, вызванному молекулами АФК, избежавшими нейтрализации.
Сочетание мутаций, затрагивающих гены chico, Indy и рuс, может быть перспективным за счет суммации эффектов, возникающих при их изменении. Первые два напрямую связаны с энергетическим обменом, в ходе которого образуются активные формы кислорода, оказывающие токсическое действие на клетки организма. При этом мутация в гене Indy замедляет процессы метаболизма, тем самым снижая выработку АФК, а мутация в chico снижает затраты энергии на протекание биохимических реакций, что также уменьшает интенсивность появления АФК. В свою очередь мутация рис позволяет организму более эффективно обезвреживать токсичные молекулы кислорода, тем самым устраняя тот эффект, что все же развивается, несмотря на мутацию, описанную ранее.